Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders.

نویسندگان

  • Kevin W McCairn
  • Atsushi Iriki
  • Masaki Isoda
چکیده

Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Therapeutic Mechanisms of Pallidal Deep Brain Stimulation for Hypo - and 1 Hyperkinetic Movement Disorders

Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research 5 Institute, Daegu 701-300as, S.Korea 6 Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, 7 Saitama 351-0198, Japan 8 Department of Physiology, Kansai Medical University School of Medicine, Hirakata, 9 Osaka 573-1010, Japan 10 11 Contact: [email protected] 12 TEL. +82-70-4496-330...

متن کامل

Control of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms

Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...

متن کامل

Treatment of Neurological and Psychiatric Disorders with Deep Brain Stimulation Raising Hopes and Future Challenges

The technology of Neural Stimulation in recent years has become the focus of the research and treatment, although it has been around for many years. The potential use of stimulating the brain and nerves ranges from the spinal cord stimulation to the implantations of cochlear and bionic eyes with a large discrepancy between the clinical readiness for these various uses. Electrical high-frequency...

متن کامل

Intractable Blepharospasm Treated with Bilateral Pallidal Deep Brain Stimulation

BACKGROUND Blepharospasm can be present as an isolated dystonia or in conjunction with other forms of cranial dystonia, causing significant disability. CASE REPORT We report a case of a 69-year-old male with craniocervical dystonia, manifesting primarily as incapacitating blepharospasm refractory to medical treatments. He underwent bilateral globus pallidus (GP) deep brain stimulation (DBS) w...

متن کامل

Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism.

OBJECTIVE Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. METHODS Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 114 4  شماره 

صفحات  -

تاریخ انتشار 2015